7*(9^2p-4)+3=45

Simple and best practice solution for 7*(9^2p-4)+3=45 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7*(9^2p-4)+3=45 equation:



7(9^2p-4)+3=45
We move all terms to the left:
7(9^2p-4)+3-(45)=0
We add all the numbers together, and all the variables
7(9^2p-4)-42=0
We multiply parentheses
63p^2-28-42=0
We add all the numbers together, and all the variables
63p^2-70=0
a = 63; b = 0; c = -70;
Δ = b2-4ac
Δ = 02-4·63·(-70)
Δ = 17640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17640}=\sqrt{1764*10}=\sqrt{1764}*\sqrt{10}=42\sqrt{10}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42\sqrt{10}}{2*63}=\frac{0-42\sqrt{10}}{126} =-\frac{42\sqrt{10}}{126} =-\frac{\sqrt{10}}{3} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42\sqrt{10}}{2*63}=\frac{0+42\sqrt{10}}{126} =\frac{42\sqrt{10}}{126} =\frac{\sqrt{10}}{3} $

See similar equations:

| 10x+6x100=2600 | | 10x=6+2600 | | 3x–2.4=9.6 | | 10+6t=34 | | -5x²+6x-1=0 | | 2/5(2k+35)-8=12 | | 3x-4=(2)-6 | | -7x-11=9x-27 | | 2(4x-10)=3x-5 | | 16z^2+8z=35 | | 3x+14=x42 | | 7x+10=11-6x | | 4(2x-7)=2(2x+3)+2 | | 21-3y+3y=15 | | 4x-11=3x-5 | | x2+16x+18=0 | | 3x-7-5x=19 | | 2/5x+20=36 | | 6x-6=5×+5 | | 10(2b+6)=20(.5b-6) | | 10x+20(x-5)=260 | | 4x-7=3½+x | | ?-6x+7(-3x-5)=-58-4x | | 18-2x-3=7x-4x | | 3/7x+2/7=2 | | 2(4b+9)+4b=15 | | n/10+7=10. | | 12-24÷3=17-3y÷4 | | 18/x-3=x/3 | | -3/8+1/4(p+4/9)=7/18-5/16p | | 3y/3+6/3=y/5 | | 3x^2+18x=147 |

Equations solver categories